nimble - MCMC, Particle Filtering, and Programmable Hierarchical Modeling
A system for writing hierarchical statistical models largely compatible with 'BUGS' and 'JAGS', writing nimbleFunctions to operate models and do basic R-style math, and compiling both models and nimbleFunctions via custom-generated C++. 'NIMBLE' includes default methods for MCMC, Laplace Approximation, Monte Carlo Expectation Maximization, and some other tools. The nimbleFunction system makes it easy to do things like implement new MCMC samplers from R, customize the assignment of samplers to different parts of a model from R, and compile the new samplers automatically via C++ alongside the samplers 'NIMBLE' provides. 'NIMBLE' extends the 'BUGS'/'JAGS' language by making it extensible: New distributions and functions can be added, including as calls to external compiled code. Although most people think of MCMC as the main goal of the 'BUGS'/'JAGS' language for writing models, one can use 'NIMBLE' for writing arbitrary other kinds of model-generic algorithms as well. A full User Manual is available at <https://r-nimble.org>.
Last updated 12 hours ago
bayesian-inferencebayesian-methodshierarchical-modelsmcmcprobabilistic-programmingopenblascpp
12.97 score 169 stars 19 dependents 2.6k scripts 3.9k downloadsnimbleSMC - Sequential Monte Carlo Methods for 'nimble'
Includes five particle filtering algorithms for use with state space models in the 'nimble' system: 'Auxiliary', 'Bootstrap', 'Ensemble Kalman filter', 'Iterated Filtering 2', and 'Liu-West', as described in Michaud et al. (2021), <doi:10.18637/jss.v100.i03>. A full User Manual is available at <https://r-nimble.org>.
Last updated 2 months ago
4.62 score 2 stars 35 scripts 652 downloadsbigGP - Distributed Gaussian Process Calculations
Distributes Gaussian process calculations across nodes in a distributed memory setting, using Rmpi. The bigGP class provides high-level methods for maximum likelihood with normal data, prediction, calculation of uncertainty (i.e., posterior covariance calculations), and simulation of realizations. In addition, bigGP provides an API for basic matrix calculations with distributed covariance matrices, including Cholesky decomposition, back/forwardsolve, crossproduct, and matrix multiplication.
Last updated 2 years ago
openblasopenmpi
2.02 score 21 scripts 199 downloads